2.3*10^-9=(0.15-x)(x)

Simple and best practice solution for 2.3*10^-9=(0.15-x)(x) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 2.3*10^-9=(0.15-x)(x) equation:



2.3*10^-9=(0.15-x)(x)
We move all terms to the left:
2.3*10^-9-((0.15-x)(x))=0
We add all the numbers together, and all the variables
-((-1x+0.15)x)-9+2.3*10^=0
We add all the numbers together, and all the variables
-((-1x+0.15)x)=0
We calculate terms in parentheses: -((-1x+0.15)x), so:
(-1x+0.15)x
We multiply parentheses
-1x^2+0.15x
Back to the equation:
-(-1x^2+0.15x)
We get rid of parentheses
1x^2-0.15x=0
We add all the numbers together, and all the variables
x^2-0.15x=0
a = 1; b = -0.15; c = 0;
Δ = b2-4ac
Δ = -0.152-4·1·0
Δ = 0.0225
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-0.15)-\sqrt{0.0225}}{2*1}=\frac{0.15-\sqrt{0.0225}}{2} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-0.15)+\sqrt{0.0225}}{2*1}=\frac{0.15+\sqrt{0.0225}}{2} $

See similar equations:

| -16f=-17f-13 | | 19m+20=17m | | .6x+7.9=5.8 | | x+0.25x=18.00 | | 4(t-3)+8=4(2t-6)= | | -7t+20=-11t-20 | | (5x-1)^-4/5=1 | | 2n=10^8 | | 175+.8x=335 | | 3(x)-3=-2 | | -4(5x-4)+3(7x-2)-3=5-8 | | 3j+12.01-1.82=1.6j-0.87 | | 12+8a=6a-6= | | 159=9x+6 | | 3.9+3.1x=x+88.1 | | 38=-6x | | 51+x=80 | | f+1=7f+12-11-6f= | | -3(h-6=5(2h+3 | | 6x+8+22x=28+14x-10+9x | | -10=4+x | | 0.16(24)+0.04=0.08(6+x) | | x-52=90 | | 4(w-5)+7w=-37 | | 2(x-4)-x/2=31 | | 10-4=4y-y | | -2x^2-3x-7=0 | | 8x-1=12x+1 | | x(x-6)=5 | | 2y-5y+6=-(3y-6)= | | 0.07x+0.16(x+3000)=1400 | | |20-9x|=7 |

Equations solver categories